Differential distribution of cathepsin B in human umbilical cord tissues.

نویسندگان

  • Tomasz Gogiel
  • Zofia Galewska
  • Lech Romanowicz
چکیده

The extracellular matrix components are differentially distributed among various structures of the umbilical cord. Wharton's jelly is especially rich in collagens and growth factors. Cathepsin B is a major cysteine protease involved in collagen degradation, as well as in the activation of precursor forms of other collagenolytic enzymes and growth factors. We assessed the activity and expression of cathepsin B in the umbilical cord arteries, veins and Wharton's jelly. Extracts of separated umbilical cord components were subjected to an activity assay with the use of specific fluorogenic substrate. The expression of cathepsin B protein was qualitatively evaluated by Western immunoblotting and quantitatively determined with an immunoenzymatic method. The total cathepsin B activity and content calculated per gram of DNA were higher in Wharton's jelly than in the umbilical cord vessels, and the latter parameter was the lowest in the umbilical cord arteries. Moreover, the expression and the activity of latent cathepsin B (following activation by pepsin digestion) calculated per gram of DNA were the highest in Wharton's jelly and the lowest in the umbilical cord arteries. High expression and activity of latent, pepsin-activatable cathepsin B related to DNA content in Wharton's jelly seem to reflect the stimulation of its cells by high amounts of collagen I and growth factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of cathepsin L in human umbilical cord tissues.

The extracellular matrix components show specific distribution patterns within various structures of the umbilical cord, among which Wharton's jelly is especially collagen-rich tissue. Cathepsin L is a potent cysteine protease engaged in degradation of extracellular matrix proteins, including collagens. We evaluated the activity and expression of cathepsin L, and the inhibitory effect of cystei...

متن کامل

Distribution of the CM-Dil-Labeled Human Umbilical Cord Vein Mesenchymal Stem Cells Migrated to the Cyclophosphamide-Injured Ovaries in C57BL/6 Mice

Background: Mesenchymal stem cells (MSCs) can be used to treat premature ovarian failure (POF). Different methods have already been applied to detect MSCs in tissues. This study aimed to investigate the quantitative distribution of CM-DiI-labeled human umbilical cord vein MSCs (hUCV-MSCs) in different regions of the ovarian tissue of the cyclophosphamide ( CTX )-induced POF in mice. Methods: Ad...

متن کامل

Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis

Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

In Vivo Tracing of Human Umbilical Cord Matrix Stem Cells Useing MRI

Purpose: Human umbilical cord matrix (UCM) (Wharton jelly) stem cells labeling are tracking by MRI. Materials and Methods: After 48 hours incubation with USPIO human umbilical cord matrix (UCM) stem cells were labeled with USPIO by the means of receptor-mediated endocytosis. Prussian blue staining and Atomic absorption spectroscopy were performed to identify and show the iron oxide nanoparticle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2012